
A SURVEY OF DE BRUIJN SEQUENCES

KISHEN N GOWDA (17110074)

IIT GANDHINAGAR

kishen.gowda@iitgn.ac.in

Link to presentation: http://bit.ly/dm-debruijn

ABSTRACT

A de Bruijn sequence is a cyclic sequence of order n on a k sized alphabet

A in which every possible string of size n built on A is present exactly once.

This is denoted by B(k,n). De Bruijn Sequences have many applications in

the field of Bio-informatics. In this paper, I will survey de Bruijn Sequences

with an emphasis on how they are constructed. I will be discussing two

methods - one is using de Bruijn Graphs and Euler cycles, and the other

is using Inverse Burrows-Wheeler Transform. I have also highlighted some

elementary proofs, applications and extensions.

http://bit.ly/dm-debruijn

2

1 Introduction

In Combinatorics, a de Bruijn sequence of order n on a size k alphabet A is a cyclic sequence

in which every possible length n string on A occurs exactly once as a sub-string (i.e., as a

contiguous subsequence). This sequence is generally denoted by B(k, n).

Let us consider the following example.

Example

let A = {0, 1}

Now, consider the string 0011. This string covers all possible length 2 strings on A.

0011 0011 0011 0011

So, the given sequence 0011 is a de Bruijn Sequence of order 2 on a size 2 Alphabet A.

We can denote this as B(2, 2).

The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn. According

to him, the existence of de Bruijn sequences for each order together with the above properties

were first proved, for the case of alphabets with two elements, i.e. B(2, n), by Camille Flye

Sainte-Marie in 1894, whereas the generalization to larger alphabets is originally due to

Tatyana van Aardenne-Ehrenfest and himself.

2 History

The earliest known example of a de Bruijn sequence comes from Sanskrit prosody where,

since the work of Pingala, each possible three-syllable pattern of long and short syllables

is given a name, such as ’y’ for short–long–long and ’m’ for long–long–long. To remember

these names, the mnemonic yamātārājabhānasalagām is used, in which each three-syllable

pattern occurs starting at its name: ’yamātā’ has a short–long–long pattern, ’mātārā’ has a

long–long–long pattern, and so on, until ’salagām’ which has a short–short–long pattern. This

mnemonic, equivalent to a de Bruijn sequence on binary 3-tuples, is of unknown antiquity,

but is at least as old as Charles Philip Brown’s 1869 book on Sanskrit prosody that mentions

it and considers it "an ancient line, written by Panini.

The first appearance of this problem was in the French problem journal L’Intermédiaire des

Mathématiciens given by A. de Rivière which questioned about the existence of a circular

3

arrangement of zeroes and ones of size 2n that contains all 2n binary sequences of length

n. The problem was solved (in the affirmative), along with the count of 22n−1−n distinct

solutions, by Camille Flye Sainte-Marie in the same year. This was largely forgotten. Martin

(1934) proved the existence of such cycles for general alphabet size in place of 2, with an

algorithm for constructing them.

In 1944, Kees Posthumus conjectured the count 22n−1−n for binary sequences, de Bruijn

proved the conjecture in 1946, through which the problem became famous.

3 Elementary Proofs

Let us see some elementary proofs of de Bruijn Sequences.

1) Length of a de Bruijn Sequence

Theorem

I Theorem 1. The length of B(n, k) is kn.

Proof. The total number of strings of size n possible on an alphabet of size k is kn.

Now, if we start constructing the de Bruijn sequence, each of the kn string has to be

present in the sequence and start at some point in the sequence. Also, each sequence

should appear exactly once. Therefore, the length of the de Bruijn sequence is kn. J

2) Existence of de Bruijn Sequences

Theorem

I Theorem 2. There are de Bruijn sequences for any positive integers n and k.

Proof. Refer [1]. J

3) Number of distinct de Bruijn Sequences

Theorem

I Theorem 3. The number of distinct de Bruijn Sequences B(k,n) is (k!)kn−1

kn

I Note. The proof of theorem 3 is beyond the scope of this paper. Refer [6].

4

4 Constructing De Bruijn Sequences

There are multiple ways to construct de Bruijn sequences. We will see two methods, one

using graphs and the other using BWT. For pseudo codes refer Appendix.

Method 1: Using de Bruijn Graphs

Definition

De Bruijn Graph: In graph theory, an n dimensional de Bruijn graph of k symbols is a

directed graph representing overlaps between sequences of symbols. It has kn−1 vertices,

consisting of all possible length n sequences of the given symbols; the same symbol may

appear multiple times in a sequence.

Let’s see an example.

Example

The following is the graph on the binary alphabet

{0, 1} and covers all sequences of size 4 possible on

the binary alphabet, as edges. The sequences can

be read as the vertex followed by the value on the

edge.

As we can notice, for constructing the de Bruijn sequence we require a path which starts at

a vertex of the graph and visits every edge exactly once and finally ends at the same point.

This is nothing but a Eulerian circuit. Therefore, we have designed a pretty natural algorithm

for generating de Bruijn sequences. Let us state the method.

Method:

1. For given k size alphabet A and n, construct a de Bruijn graph.

2. Select any vertex, find a Eulerian circuit. Let v1.e1e2e3.....ekn−1 .v1 be the Eulerian circuit,

where v1 is the start vertex.

5

3. Now, concatenate the values on the edges in the sequence of edges above. The resulting

sequence is the de Bruijn sequence B(k, n).

Example

The following is one of the possible Eulerian circuits

of the de Bruijn Graph constructed on the binary

alphabet and sequence length 4.

By writing the sequence of edge values from the

Eulerian circuit, we get the de Bruijn Sequence

B(2, 4).

I Note. The proof of existence of Eulerian circuit for the de Bruijn Graph is proved while

proving the existence of de Bruijn sequences. See [1] for more details.

Method 2: By Inverse Burrows-Wheeler Transform

Before we go ahead with the method, let us see some definitions.

1) Lyndon Words

Definition

Lyndon Word: A Lyndon word is a non-empty string that is strictly smaller in

lexicographic order than all of its rotations.

For example, the Lyndon words over the binary alphabet 0,1, sorted by length and then

lexicographically within each length class, form an infinite sequence (A001037 in OEIS) that

begins as,

0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101, 00111, 01011, 01111, ...

The first string that does not belong to this sequence, "00", is omitted because it is periodic (it

6

consists of two repetitions of the substring "0"); the second omitted string, "10", is aperiodic

but is not minimal in its permutation class as it can be cyclically permuted to the smaller

string "01".

2) Burrows-Wheeler Transform (BWT)

Definition

Burrows-Wheeler Transform: The Burrows–Wheeler transform (BWT), also called

block-sorting compression, is an algorithm used to prepare data for use with data

compression techniques. The BWT rearranges a character string into runs of similar

characters.

For example, consider the string "ˆBANANA|". By BWT, it gets transformed to "BNNˆAA|A".

Transformation
Input All rotations Sort in lexical order Take the last column Output

ˆBANANA|

ˆBANANA| ANANA|ˆB ANANA|ˆB

BNNˆAA|A

|ˆBANANA ANA|ˆBAN ANA|ˆBAN
A|ˆBANAN A|ˆBANAN A|ˆBANAN
NA|ˆBANA BANANA|ˆ BANANA|ˆ
ANA|ˆBAN NANA|ˆBA NANA|ˆBA
NANA|ˆBA NA|ˆBANA NA|ˆBANA
ANANA|ˆB ˆBANANA| ˆBANANA|
BANANA|ˆ |ˆBANANA |ˆBANANA

3) Bijective Variant of BWT

Definition

Bijective Variant of Burrows-Wheeler Transform: The bijective transform is computed

by factoring the input into a non-increasing sequence of Lyndon words; such a

factorization exists and is unique by the Chen–Fox–Lyndon theorem [3], and may

be found in linear time

For example, the string ˆBANANA is broken into Lyndon words as (ˆ) (B) (AN) (AN) (A).

7

Bijective Transformation
Input All rotations Sort alphabetically Last column of rotated Lyndon word Output

ˆBANANA|

ˆˆˆˆ.... (ˆ) AAAA.... (A) AAAA.... (A)

ANNBAAˆ|

BBBB.... (B) ANAN... (AN) ANAN... (AN)
ANAN... (AN) ANAN... (AN) ANAN... (AN)
NANA... (NA) BBBB.... (B) BBBB.... (B)
ANAN... (AN) NANA... (NA) NANA... (NA)
NANA... (NA) NANA... (NA) NANA... (NA)
AAAA.... (A) ˆˆˆˆ.... (ˆ) ˆˆˆˆ.... (ˆ)

Based on the above definitions, we can claim that,

Claim

B Claim. An inverse Burrows—Wheeler transform on a word w generates a multi-set

of equivalence classes consisting of strings and their rotations. These equivalence

classes of strings each contain a Lyndon word as a unique minimum element, so the

inverse Burrows—Wheeler transform can be considered to generate a set of Lyndon

words.

Proof. Refer [7] J

4) Connection to de Bruijn sequences

Theorem

I Theorem 4. If one concatenates together, in lexicographic order, all the Lyndon words

that have length dividing a given number n, the result is the de Bruijn sequence B(k,n).

Proof. Refer [5]. J

Therefore, from the above definitions and Theorem 4, we get another method for the

construction of de Bruijn Sequences. Let’s state it.

Method:

1. For given k size alphabet A and n, construct the string w by repeating A kn−1 times.

2. Sort the characters in w to yield the string w′.

8

3. Position the string w′ above the string w, and map each letter’s position in w′ to its

position in w while preserving order. This process defines the standard permutation.

4. Write this permutation in cycle notation with the smallest position in each cycle first, and

the cycles sorted in increasing order.

5. For each cycle, replace each number with the corresponding letter from string w′ in that

position.

6. Each cycle has now become a Lyndon word, and they are arranged in lexicographic order,

so dropping the parentheses yields the first de Bruijn sequence.

Example

For example, to construct the smallest B(2,4) de Bruijn sequence of length 24 = 16,

repeat the alphabet (ab) 8 times yielding w = abababababababab. Sort the characters

in w, yielding w′ = aaaaaaaabbbbbbbb. Position w′ above w as shown, and map each

element in w′ to the corresponding element in w by drawing a line. Number the

columns as shown so we can read the cycles of the permutation:

Starting from the left, the cycles are:

(1) (2 3 5 9) (4 7 13 10) (6 11) (8 15 14 12) (16).

Then, replacing each number by the corresponding letter in w′ from that column

yields: (a)(aaab)(aabb)(ab)(abbb)(b).

These are all of the Lyndon words whose length divides 4, in lexicographic order, so

dropping the parentheses gives B(2, 4) = aaaabaabbababbbb.

5 Applications

1. The sequence can be used to shorten a brute-force attack on a PIN-like code lock that

does not have an "enter" key and accepts the last n digits entered. For example, a digital

9

door lock with a 4-digit code would have B(10, 4) solutions, with length 10000. Therefore,

only at most 10000 + 3 = 10003 (as the solutions are cyclic) presses are needed to open

the lock. Trying all codes separately would require 4 × 10000 = 40000 presses.

2. The symbols of a de Bruijn sequence written around a circular object (such as a wheel of

a robot) can be used to identify its angle by examining the n consecutive symbols facing a

fixed point. This angle-encoding problem is known as the "rotating drum problem".

3. De Bruijn cycles are of general use in neuroscience and psychology experiments that

examine the effect of stimulus order upon neural systems, and can be specially crafted for

use with functional magnetic resonance imaging (fMRI).

4. Creating cool games and tricks.

5. Wide applications in Bioinformatics.

6 Extensions

Let us see some extensions of de Bruijn Sequences.

1) f-fold de Bruijn Sequences

Definition

f-fold de Bruijn Sequences: f-fold n-ary de Bruijn sequence is an extension of the notion

n-ary de Bruijn sequence, such that the sequence of the length fkn contains every possible

subsequence of the length n exactly f times.

For example, for n = 2 the cyclic sequences 11100010 and 11101000 are two-fold binary de

Bruijn sequences.

The number of two-fold de Bruijn sequences is denoted by Nn. Some of the known values of

Nn are N1 = 2, N2 = 5, N3 = 72, and N4 = 43768.

2) De Bruijn Torus

Definition

De Bruijn Torus: A de Bruijn torus is a toroidal array with the property that every k-ary

m-by-n matrix occurs exactly once.

10

Such a pattern can be used for two-dimensional

positional encoding in a fashion analogous to that

described above for rotary encoding. Position can be

determined by examining the m-by-n matrix directly

adjacent to the sensor, and calculating its position on the

de Bruijn torus. The smallest possible binary "square" de

Bruijn torus, depicted right, denoted as (4, 4; 2, 2)2 de

Bruijn torus (or simply as B2), contains all 2× 2 binary

matrices.

7 Conclusion

In this paper, we have seen two methods for constructing de Bruijn Sequences B(k, n), one

was very intuitive but inefficient whereas the other was non-intuitive but efficient. We

have also highlighted some of the applications of de Bruijn sequences, which makes it’s

construction important.

References

[1] Jacob Bower. 18.312: Algebraic Combinatorics - Lecture 21. 2011. DOI: http://pi.math.

cornell.edu/~levine/18.312/alg-comb-lecture-21.pdf.

[2] Nicolaas Govert de Bruijn. A Combinatorial Problem. 1946. DOI: http://www.dwc.knaw.

nl/DL/publications/PU00018235.pdf.

[3] M. Hazewinkel. “Chen-Fox-Lyndon Factorization for Words over Partially Ordered Sets”.

In: Journal of Mathematical Sciences 131.6 (Dec. 2005), pp. 6027–6031. ISSN: 1573-

8795. DOI: 10.1007/s10958-005-0458-7. URL: https://doi.org/10.1007/s10958-

005-0458-7.

[4] M. H. Martin. “A problem in Arrangements”. In: (1934). DOI: http://www.ams.org/

journals/bull/1934- 40- 12/S0002- 9904- 1934- 05988- 3/S0002- 9904- 1934-

05988-3.pdf.

[5] Eduardo Moreno. “On the theorem of Fredricksen and Maiorana about de Bruijn

sequences”. In: (2003). DOI: https://core.ac.uk/download/pdf/82741740.pdf.

https://doi.org/http://pi.math.cornell.edu/~levine/18.312/alg-comb-lecture-21.pdf
https://doi.org/http://pi.math.cornell.edu/~levine/18.312/alg-comb-lecture-21.pdf
https://doi.org/http://www.dwc.knaw.nl/DL/publications/PU00018235.pdf
https://doi.org/http://www.dwc.knaw.nl/DL/publications/PU00018235.pdf
https://doi.org/10.1007/s10958-005-0458-7
https://doi.org/10.1007/s10958-005-0458-7
https://doi.org/10.1007/s10958-005-0458-7
https://doi.org/http://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05988-3/S0002-9904-1934-05988-3.pdf
https://doi.org/http://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05988-3/S0002-9904-1934-05988-3.pdf
https://doi.org/http://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05988-3/S0002-9904-1934-05988-3.pdf
https://doi.org/https://core.ac.uk/download/pdf/82741740.pdf

11

[6] Vladimir Raphael Rosenfeld. “Enumerating De Bruijn Sequences”. In: (). DOI: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9804&rep=rep1&

type=pdf.

[7] Marinella Sciortino. Suffixes, Conjugates and Lyndon words. 2013. DOI: http://pages.

di.unipi.it/rosone/talks/DLT_2013.pdf.

Appendix

Below is a recursive implementation of Inverse BWT, which returns B(k, n) for given alphabet

A of size k and n, in python.

1 def de_bruijn(k, n):
2 """
3 de Bruijn sequence for alphabet of size k
4 and subsequences of length n.
5 """
6 try:
7 '''
8 let's see if k can be cast to an integer
9 if so, make our alphabet a list

10 '''
11 intk = int(k)
12 alphabet = list(map(str, range(k)))
13

14 except (ValueError, TypeError):
15 alphabet = k
16 k = len(k)
17

18 a = [0] * k * n
19 sequence = []
20

21 def db(t, p):
22 if t > n:
23 if n % p == 0:
24 sequence.extend(a[1:p + 1])
25 else:
26 a[t] = a[t - p]
27 db(t + 1, p)
28 for j in range(a[t - p] + 1, k):
29 a[t] = j
30 db(t + 1, t)
31 db(1, 1)
32 return "".join(alphabet[i] for i in sequence)

https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9804&rep=rep1&type=pdf
https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9804&rep=rep1&type=pdf
https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9804&rep=rep1&type=pdf
https://doi.org/http://pages.di.unipi.it/rosone/talks/DLT_2013.pdf
https://doi.org/http://pages.di.unipi.it/rosone/talks/DLT_2013.pdf

	Introduction
	History
	Elementary Proofs
	Constructing De Bruijn Sequences
	Applications
	Extensions
	Conclusion

